Nicotinic Receptor Fourth Transmembrane Domain

نویسندگان

  • Cecilia Bouzat
  • Francisco Barrantes
  • Steven Sine
چکیده

The fourth transmembrane domain (M4) of the nicotinic acetylcholine receptor (AChR) contributes to the kinetics of activation, yet its close association with the lipid bilayer makes it the outermost of the transmembrane domains. To investigate mechanistic and structural contributions of M4 to AChR activation, we systematically mutated alphaT422, a conserved residue that has been labeled by hydrophobic probes, and evaluated changes in rate constants underlying ACh binding and channel gating steps. Aromatic and nonpolar mutations of alphaT422 selectively affect the channel gating step, slowing the rate of opening two- to sevenfold, and speeding the rate of closing four- to ninefold. Additionally, kinetic modeling shows a second doubly liganded open state for aromatic and nonpolar mutations. In contrast, serine and asparagine mutations of alphaT422 largely preserve the kinetics of the wild-type AChR. Thus, rapid and efficient gating of the AChR channel depends on a hydrogen bond involving the side chain at position 422 of the M4 transmembrane domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinic Receptor Fourth Transmembrane Domain Hydrogen Bonding by Conserved Threonine Contributes to Channel Gating Kinetics

The fourth transmembrane domain (M4) of the nicotinic acetylcholine receptor (AChR) contributes to the kinetics of activation, yet its close association with the lipid bilayer makes it the outermost of the transmembrane domains. To investigate mechanistic and structural contributions of M4 to AChR activation, we systematically mutated a T422, a conserved residue that has been labeled by hydroph...

متن کامل

Single amino acid residue in the extracellular portion of transmembrane segment 2 in the nicotinic alpha7 acetylcholine receptor modulates sensitivity to ketamine.

BACKGROUND Ketamine inhibits the activation of both heteromeric and homomeric nicotinic acetylcholine receptors. The site of molecular interaction is unknown. METHODS The inhibition of alpha7 nicotinic acetylcholine receptors by ketamine was compared to that of 5-hydroxytryptamine-3A (5HT3A) receptors that are resistant to ketamine inhibition in Xenopus laevis oocytes. To determine whether th...

متن کامل

Energetic Contributions to Channel Gating of Residues in the Muscle Nicotinic Receptor β1 Subunit

In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational chang...

متن کامل

Roles for nicotinic acetylcholine receptor subunit large cytoplasmic loop sequences in receptor expression and function.

To evaluate possible physiological roles of the large cytoplasmic loops (C2) and neighboring transmembrane domains of nicotinic acetylcholine receptor (nAChR) subunits, we generated novel fusion constructs in which human nAChR alpha4, beta2, or beta4 subunit C2 or C2 and neighboring sequences were replaced by corresponding sequences from the mouse serotonin type 3A (5-HT3A) receptor subunit. Fo...

متن کامل

Structure of the pore-forming transmembrane domain of a ligand-gated ion channel.

The structure of the pore-forming transmembrane domain of the nicotinic acetylcholine receptor from Torpedo has been investigated by infrared spectroscopy. Treatment of affinity-purified receptor with either Pronase or proteinase K digests the extramembranous domains (roughly 75% of the protein mass), leaving hydrophobic membrane-imbedded peptides 3-6 kDa in size that are resistant to peptide (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2000